
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017 2223

A Novel Approximation for Multi-Hop Connected
Clustering Problem in Wireless Networks

Xiaofeng Gao, Member, IEEE, Xudong Zhu, Jun Li, Fan Wu, Member, IEEE, Guihai Chen, Member, IEEE,
Ding-Zhu Du, Member, IEEE, and Shaojie Tang, Member, IEEE

Abstract— Wireless sensor networks (WSNs) have been widely
used in a plenty of applications. To achieve higher efficiency for
data collection, WSNs are often partitioned into several disjointed
clusters, each with a representative cluster head in charge of
the data gathering and routing process. Such a partition is
balanced and effective, if the distance between each node and
its cluster head can be bounded within a constant number of
hops, and any two cluster heads are connected. Finding such
a cluster partition with minimum number of clusters and con-
nectors between cluster heads is defined as minimum connected
d-hop dominating set (d-MCDS) problem, which is proved to be
NP-complete. In this paper, we propose a distributed approxima-
tion named CS-Cluster to address the d-MCDS problem under
unit disk graph. CS-Cluster constructs a sparser d-hop maximal
independent set (d-MIS), connects the d-MIS, and finally checks
and removes redundant nodes. We prove the approximation ratio
of CS-Cluster is (2d+1)λ, where λ is a parameter related with
d but is no more than 18.4. Compared with the previous best
result O(d2), our approximation ratio is a great improvement.
Our evaluation results demonstrate the outstanding performance
of our algorithm compared with previous works.

Index Terms— Wireless networks, clustering, distributed algo-
rithm, approximation, connected dominating set.

I. INTRODUCTION

W IRELESS sensor network (WSN) is a self-organized
communication system consisting of many small-sized,

cheap, and battery-powered sensors. WSNs have been widely
used in a lot of applications such as health-care industry, food
industry, disaster management, battlefield surveillance, etc. In
these applications, the task of each sensor is to collect the
information in its surrounding environment and transmit the
corresponding data to the base stations of WSNs. Over the past

Manuscript received March 30, 2016; revised December 8, 2016; accepted
March 1, 2017; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor S. Chong. Date of publication May 2, 2017; date of current version
August 16, 2017. This work was supported in part by the Program of
International S&T Cooperation under Grant 2016YFE0100300, in part by
the China 973 Project under Grant 2014CB340303, in part by the National
Natural Science Foundation of China under Grant 61472252, Grant 61672353,
Grant 61422208, and Grant 61672348, in part by the Shanghai Science
and Technology Fund under Grant 15220721300, and in part by the Sci-
entific Research Foundation for the Returned Overseas Chinese Scholars.
(Corresponding Author: Xiaofeng Gao.)

X. Gao, X. Zhu, J. Li, F. Wu, and G. Chen are with the Shanghai
Key Laboratory of Scalable Computing and Systems, Department of Com-
puter Science and Engineering, Shanghai Jiao Tong University, Shanghai
200240, China (e-mail: gao-xf@cs.sjtu.edu.cn; xudongzhu42@gmail.com;
lijun2009@sjtu.edu.cn; fwu@cs.sjtu.edu.cn; gchen@cs.sjtu.edu.cn).

D.-Z. Du and S. Tang are with The University of Texas at Dallas,
Richardson, TX 75080 USA (e-mail: dzdu@utdallas.edu; tangshaojie@
gmail.com).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This consists of a PDF
(271 KB) containing the appendices.

Digital Object Identifier 10.1109/TNET.2017.2690359

decades, a lot of related researches have studied data gathering
and transmission problems [1]–[7].

Due to the battery limitation of sensors, energy conservation
is always an important factor for extending the lifetime of
WSNs, and a lot of researches have been done for this
problem [6], [8]–[11]. In addition, sensor nodes also have con-
straints on communication bandwidth, communication range,
and storage space. Thus, a message may be transferred mul-
tiple times through several intermediate nodes along a path
to its destination. This kind of flooding-like routing scheme
causes huge amount of traffic collision, message redundancy,
and energy consumption.

In order to overcome these shortcomings, an efficient
approach named clustering has been widely used by many
researchers. We can divide a WSN into several disjointed
clusters, each with a cluster head to take charge of the data
gathering and the communication processes. Then, any node
in the WSN only needs to collect information and send the
data to its corresponding cluster head, which saves a lot of
energy. The most important part for clusting scheme is to
efficiently partition the given WSN into disjointed clusters
and many algorithms were proposed to achieve this purpose.
In [12], through coordination of nodes in the same cluster,
the authors proposed a clustering algorithm to optimize the
energy conservation. Load balancing is also a crucial issue
for clustering mechanisms. Younis and Fahmy [13] aimed at
setting equal-sized clusters to balance the workload. By setting
a hop threshold k, researchers also discussed k-hop clustering
problem [14]–[16] requiring that each node should be within
k hops from its cluster head.

The average size of clusters is an important metric to
estimate the performance of a WSN. If the cluster size is too
large, then it is difficult for the cluster head to manage the
cluster. In contrast, if the cluster size is too small, then there
will be too many clusters in the WSN, which downgrades the
performance of clustering strategy. An effective way to control
the average size is to set a parameter d, and each cluster head
only takes charge of its d-hop neighbors. To achieve better
communication between clusters, any pair of cluster heads
should be able to communicate with each other directly or
through the relay of other cluster heads. Thus the problem
becomes finding an effective partition with minimum number
of clusters w.r.t. d, while each cluster head can generate a
connected subgraph with the smallest number of additional
connectors.

More precisely, we use a graph G = (V, E) to model a
WSN, where V is the set of sensors in the network while
(u, v) ∈ E iff u and v communicate with each other. In this

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2224 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

paper, we consider a homogeneous network, where each node
has the same communication range. So the graph can be
formed as a unit disk graph (UDG). We focus on constructing
a connected d-hop clusters for G. Actually, the set of cluster
heads can be considered as a d-hop dominating set (d-DS).
Consequently, our task is to find a connected d-DS (d-CDS) for
a given graph. Moreover, we hope the cardinality of the d-CDS
is minimized in order to reduce the maximum possible number
of redundant messages, which corresponds to the minimum
connected d-hop dominating set (d-MCDS) problem.

In all, our goal is to find a d-MCDS for a UDG G = (V, E).
In this paper, we propose a three-phase algorithm named
Connected Sparse Clustering Strategy (CS-Cluster) to solve
this problem. The first phase of CS-Cluster is to select a d-hop
maximal independent set (d-MIS). Then, some extra nodes are
added to connect the d-MIS into a d-CDS. In order to further
reduce the size of the obtained d-CDS, the third phase is to
check and remove redundant nodes. Our contributions in this
paper are summarized as follows:

• We propose a novel approximation algorithm for the
d-MCDS problem, and prove its approximation ratio as
(2d + 1)λ, where λ is a parameter related with d but no
more than 18.4. Our algorithm improves the previous best
ratio of O(d2) into O(d). Moreover, evaluation results
also exhibit the outstanding performance of CS-Cluster
compared with the closest related work.

• We theoretically analyze the upper bound of the size
of d-MIS (denoted as α(G)) w.r.t. the size of d-MCDS
(denoted as γ(G)) for a UDG G = (V, E). We prove that
the ratio of α(G) and γ(G) is bounded by λ. Compared
with the previous best result O(d), we reduce it to O(1),
which is a huge improvement.

• CS-Cluster is a distributed algorithm, which is more
suitable for applications in WSNs. With thorough dis-
cussions, we conclude that CS-Cluster not only fits for
UDG model, but also for general network model.

Our paper is organized as follows. Section II provides some
preliminaries. In Section III, we introduce the related works.
In Section V, we describe our algorithm CS-Cluster for the
d-MCDS problem. Afterwards, we analyze the performance of
CS-Cluster in Section VI and Section VII gives the simulation.
Finally, Section VIII concludes this paper.

II. PRELIMINARIES

In this section, we will introduce some definitions and then
summarize the symbols used in the paper. Firstly, for a given
graph G = (V, E), we give several definitions.

Definition 1 (UDG): G is a Unit Disk Graph (UDG) if
∀u, v ∈ V , there is an edge (u, v) ∈ E iff dis(u, v) ≤ 1.
dis(u, v) is the Euclidean distance between u and v.

Definition 2 (d-DS): D ⊆ V is a d-hop Dominating Set
(d-DS) of G if ∀v ∈ V , either v ∈ D or ∃u ∈ D such that
there exists a path of length at most d-hop between u and v.

Definition 3 (d-IS): A d-hop Independent Set (d-IS) of G
is a subset I ⊆ V such that ∀u, v ∈ I , there does not exist a
path of length at most d-hop between u and v.

Definition 4 (d-MIS): A d-IS I is a d-hop Maximal Inde-
pendent Set (d-MIS) if ∀v ∈ V \I , I∪{v} is no longer a d-IS.

TABLE I

SYMBOLS, NOTATIONS, AND FUNCTIONS IN THIS PAPER

Many researchers consider finding a d-MIS instead of a
d-DS for graph G, since the former is easier and more efficient.
Thus we need the following lemma.

Lemma 1: For any given graph G, a d-MIS is also a d-DS.
Proof: For a d-MIS I and any node v ∈ V \I , I ∪ {v}

is no longer a d-MIS, which means v is dominated by some
node in I in d hops. As a result, I is a d-DS. �

Definition 5 (d-CDS): A subset C ⊆ V is a Con-
nected d-hop Dominating Set (d-CDS) of G if C is a
d-DS and the subgraph induced by C is connected.

In addition, we need to define the Voronoi Division which
will be referred in next sections.

Definition 6 (Voronoi Division): Let S be a set of nodes in
Euclidean space. For each node v ∈ S, the corresponding
Voronoi cell V (v) is the set of points that are closer to v than
to other nodes of S, which means

V (v) = {w | for every u ∈ S\{v}, dis(v, w) ≤ dis(u, w)}.
The Voronoi diagram is the partition induced by Voronoi cells.
In order to simplify our problem, we make some assumptions.
First, we focus on WSNs located at 2-dimensional space.
Second, each sensor in the network has the same commu-
nication range and implements efficient scheduling strategy
with multiple available frequencies, such that no collision
occurs in the procedure of message transmitting. Under these
assumptions, we define the d-MCDS problem as follows.

Definition 7 (d-MCDS): For a given UDG G = (V, E),
d-MCDS problem is to find a d-CDS with minimum size.

Table I introduces and summarizes the symbols, functions,
and notations that will be used in the following sections.

III. RELATED WORKS

The minimum connected dominating set problem (namely,
the 1-MCDS problem) is a classical NP-complete problem.
In [17], Clark et al. first proved that MCDS is NP-complete
even in UDG. To obtain a better feasible solution, Wan et
al. [18] devised a two-phase algorithm with constant-factor
approximation ratio. The first phase is to select an MIS. Then,
it adds some extra nodes to connect the MIS into a CDS.
Later, many works were done to improve this approximation
ratio [19]–[21]. The ratio of the size of MIS to the size
of MCDS in graph G is crucial to estimate the algorithm’s
performance. The upper bound of such ratio is also called the
theoretical bound to approximation CDS. Up to now, the best

GAO et al.: NOVEL APPROXIMATION FOR MULTI-HOP CONNECTED CLUSTERING PROBLEM IN WIRELESS NETWORKS 2225

result for this bound is 3.399 [22]. Kim et al. [23] provided
an approximation for MCDS in unit ball graph (UDG).

The d-MCDS problem is an extension of 1-MCDS. In 2000,
Vuong and Huynh [24] proved that d-MCDS is NP-complete
in general graph by a reduction from 3-SAT problem. Later,
Nguyen and Huynh [25] proved its NP-completeness in UDG.
A lot of heurestics were proposed to find a feasible solution of
d-MCDS [26], [27]. However, they all lacked approximation
analysis.

In 2010, Li and Zhang [28] proposed an approximation
algorithm on finding minimum two-connected d-hop dominat-
ing set. They gave an approximation ratio of O(log |V |). Later,
Gao et al. [29] presented a two-phase distributed algorithm
to compute d-CDS in UDG, and they gave a constant-factor
approximation ratio of O(d3). Zhang et al. [30] improved
the approximation ratio into O(d2). In 2014, Zhu et al. [31]
proposed the first constant-factor approximation for d-MCDS
in 3-dimensional space.

There are many other related works for the clustering
problem. Wang et al. [32] proposed a PTAS to mini-
mize the average hop distance from any nodes to cluster
heads in 2D sensor networks without connectivity property.
Kim et al. [33] discussed how to find the locations of k sinks
such that the maximum distance from other nodes to sinks
is minimized. Some researches aimed at fault-tolerant virtual
backbone construction [34]–[36], and formulated this problem
as m-dominating connected set. In [37] and [38], the authors
consider latency of the network and try to find connected
dominating set with bounded diameter.

IV. CS-CLUSTER FOR THE d-MCDS PROBLEM

In this section, we introduce our algorithm named
Connected Sparse Clustering Strategy (CS-Cluster) for the
d-MCDS problem in G = (V, E). CS-Cluster consists of
three phases. First, we construct a sparse d-MIS. Second, we
connect the d-MIS into a d-CDS by adding some extra nodes
called connectors. Finally, we remove redundant nodes from
the obtained d-CDS to further reduce its size.

CS-Cluster is a coloring algorithm. We use four different
colors to denote different statuses. Initially, all nodes are white.
When a node is chosen as a dominator, it will be colored as
black. Once a node has a black neighbor within d hops, which
means it is dominated by some black node, it will be colored
grey. Nodes used to connect dominators are colored blue.

In addition, when applying CS-Cluster to partition a wireless
network, we select those black nodes as cluster headers. For
each cluster head, its corresponding cluster consists of its
neighbors which are at most d hops away.

A. Constructing a d-MIS

According Lemma 1, we can select a d-MIS as d-DS for
a given graph. Generally, we select d-MIS nodes one by one.
For example, assume the current d-IS is S, then we select a
node from V \ ∪v∈S Nd(v) and add it to S. We continue this
process until S is a d-MIS. In literature such as [29]–[31],
researchers often restrict that the new node is d+1 hops away
from S. With such restriction, they can easily use spanning
tree algorithm to connect the final d-MIS.

Fig. 1. The input graph of a 2-MCDS problem with 17 nodes.

However, such restriction has a great effect on the size
of the chosen d-MIS. An example is shown in Fig. 1 with
d = 2. Considering the restriction, we will select nodes
{4, 9, 12, 15, 16} as d-MIS with size 5. However, if we ignore
such restriction, we can select a set {4, 11, 16} with size 3.
Based on this observation, we remove such restriction, and
propose an efficient algorithm to select a sparser d-MIS as
Alg. 1 shows.

Algorithm 1 Constructing d-MIS

Input : A connected graph G = (V, E)
Output: A d-MIS of G

1 Color all nodes in V as white;
2 M = ∅;
3 while there exists a white node in V do
4 Find a white node v from V \M , such that the number

of v’s white neighbors within d hops is maximum.
Use id to break ties;

5 Color v as black and color its white neighbors within
d hops as grey;

6 M = M ∪ {v};
7 return M .

Alg. 1 is a greedy algorithm. Initially, it color all nodes
in V as white. Then, for each white node v, it calculates the
number of v’ white neighbors within d hops, which is called as
v’s degree. Among all white nodes, we select the node with
maximal degree, and color it black. Meanwhile, update the
statuses, such as colors and degrees, for white nodes within
d hops away from the new chosen node. Next, continue to
choose the node with maximal degree from the remaining
white nodes, until no white node exists.

Fig. 2 shows the corresponding 2-MIS after processing
Alg. 1 for the 2-MCDS problem in Fig. 1.

B. Connecting a d-MIS

After Alg. 1, we get a d-MIS denoted as M , which is also
a d-DS. Now, we discuss how to connect it into a d-CDS.

For a given graph G = (V, E), any two nodes u, v ∈ V are
“k-hop connected" to each other if there exists a path in graph
G between them and the length of the path is at most k. For
example, in Fig 2, node 4 and node 16 are 4-hop connected and
also 5-hop connected. A subset S ⊆ V is a “k-hop connected
d-hop dominating set” iff:

• S is a d-hop dominating set of graph G.

2226 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Fig. 2. The result after processing Alg. 1. Initially, node 4 has the maximal
white neighbors with 2 hops. Thus, we color node 4 black and all its white
neighbors with 2 hops {1, 2, 3, 5, 6, 7, 8} grey. In the next turn, node 11 with
6 white neighbors with 2 hops is chosen. Thus, color node 11 black and its
white neighbors with 2 hops {9, 10, 12, 13, 14, 15} grey. In the third iteration,
both node 16 and node 17 have one white neighbor within 2 hops. We break
tie by selecting the node with smaller id. Thus, color node 16 black and color
node 17 gray. Since there are not more white nodes, Alg. 1 terminates.

• For any vertex u ∈ S, there exists at least one vertex
v ∈ S such that u and v are k-hop connected.

For example, in Fig 2, the set of nodes {4, 11, 16} forms
a 5-hop connected 2-hop dominating set. In addition, for a
graph G = (V, E), a subset S ⊆ V is a “k-hop connected
component” iff:

• For any vertex u ∈ S, there exist at least one vertex v ∈ S
such that u and v are k-hop connected.

• For any other vertex v ∈ V \S, there does not exist any
vertex u ∈ S such that u and v are k-hop connected.

For example, in Fig 2, nodes 4, 8, 16 form a 2-hop connected
component. For nodes {4, 8, 11, 16}, they form a 3-hop con-
nected component.

For a vertex subset C ⊆ V , let fk(C) be the number of
k-hop connected components of the induced subgraph
G[C]. For example, in Fig. 2, f2({4, 8, 16}) = 1,
f2({4, 8, 11, 16}) = 2. ∀v ∈ V , define

−Δvfk(C) = fk(C)− fk (C ∪ {v}) ,

representing the reduced number of k-hop connected compo-
nents in C when v is inserted into C.

1) Algorithm Description: The main idea is divide and
conquer and the algorithm consists of several subprocedures.
In each subprocedure, we add some extra nodes to make M
more closer than the previous subprocedure.

In detail, in the ith subprocedure, a subset Ci is selected
from V \⋃

j<i Ci ∪ M such that
⋃

j≤i Cj ∪ M is a
r(i)-hop connected d-hop dominating set. The definition of
r(i) is shown as follows:

{
r(0) = 2d + 1,

r(i) =
⌊

r(i−1)+1
2

⌋
.

(1)

Obviously, nodes in r(i)-hop connected d-hop dominating set
is more closer than in r(i−1)-hop connected d-hop dominating
set, since r(i) is a monotone decreasing function.

After Alg. 1, M is an r(0)-hop connected d-hop dominating
set, which means any two nodes in M are (2d + 1)-hop
connected. When the algorithm in this subsection terminates,
we should get a 1-hop connected d-dominating set, namely
d-CDS. Alg. 2 depicts the detailed steps.

Algorithm 2 Connecting d-MIS

Input : G = (V, E), a d-MIS M of G
Output: A d-CDS of G

1 C = M, r = 2d + 1, i = 0;
2 while r > 1 do
3 r = 	 r+1

2
, i = i + 1, Ci = ∅;
4 while fr(C ∪Ci) > 1 do
5 Find a grey node v from V \(C ∪Ci) with the

maximum cost(v). Use id to break ties;
6 Color v as blue;
7 Ci = Ci ∪ {v};
8 C = C ∪ Ci;

9 return C.

Hence, the key part in Alg. 2 is how to determine nodes
in Ci. To make the size of Ci as small as possible, we should
choose the most efficient nodes that makes

⋃
j≤i Cj∪M form

an r(i)-hop connected d-hop dominating set. An intuitive idea
is to iteratively choose nodes that can reduce the most number
of r(i)-hop connected components. In order to make our
algorithm more economical, we also take the number of the
fewest nodes to reduce those r(i)-hop connected components
into account. The detailed description is as follows.

At the beginning of the tth iteration of the ith round, Ci con-
tains t−1 nodes. Let C =

⋃
j≤i Ci∪M . For a node v in V \C,

it reduces the number of r(i)-hop connected components by
−Δvfr(i)(C). Consequently, there exist −Δvfr(i)(C) shortest
paths that connect node v to those −Δvfr(i)(C) components
respectively. We use no.(v) to denote the total number of
nodes in those shortest pathes except two end points (but
includes v). That is to say, no.(v) is the minimum number
of nodes with respect to v to reduce those −Δvfr(i)(C)
components. Moreover, we use cost(v) to denote the cost of
v under the current state and its definition is as follows.

cost(v) =
−Δvfr(C ∪Ci)

no.(v)
.

In every iteration, we select the node with the largest cost.
Note that the definition of cost(v) is much crucial to guarantee
and improve the performance of our algorithm. An example
of Alg. 2 is shown in Fig. 3.

2) Correctness Proof: Initially, the input M is a d-MIS,
so fd+1(M) = |M | and f2d+1(M) ≤ |M |. According to the
definition of d-MIS, the nodes in d-MIS can be ordered in a
way such that each node is at most (2d+1)-hop away from one
of its predecessors. We call such a property as “(2d + 1)-hop
connection property”. Hence, easy to see that f2d+1(M) = 1.
Actually we have Lemma 2 as follows.

Lemma 2: For any subset S, it has k-hop connection prop-
erty if and only if fk(S) = 1.

Proof: It is clear that S has k-hop connection property
if and only if the subgraph induced by S is k-hop connected,
which is true when fk(S) = 1. �

Lemma 3: In Alg. 2, the ith round will terminate when
fr(i)(

⋃
j≤i Cj ∪M) = 1.

GAO et al.: NOVEL APPROXIMATION FOR MULTI-HOP CONNECTED CLUSTERING PROBLEM IN WIRELESS NETWORKS 2227

Fig. 3. The result after processing Alg. 2. At the beginning of the first round,
there are three 3-hop connected components ({4}, {11}, {16}). We should
3-hop connect these three components into one. At this time, the costs of
nodes 7, 8, 9, 17 are 1/3, 2/5, 2/5, 1/3 respectively, while all other grey nodes
have cost 0. Since node 8 has smaller id than node 9, we color node 8 blue.
Now the 3-hop connected component is only {4, 8, 11, 16}, and thus the first
round terminates. Next, in the second round there are two 2-hop connected
components ({4, 8, 16}, {11}). At this time nodes 9, 10 have the same cost of
1/2 while other grey nodes have value 0. Similarly we color node 9 blue and
terminate the second round. When the third round starts, there are four 1-hop
connected components ({4}, {8, 9}, {11}, {16}), while nodes 7, 17, 10 have
the same cost of 1 and other grey nodes have cost 0. Thus, we select node 7
in the first iteration of this round. Then, select 10 in the second iteration, and
17 in the third iteration. After that, Round 3 terminates. At this time r = 1.
Consequently, Alg. 2 completes its task.

Proof: When i = 0, Lemma 3 holds obviously as we have
shown above. Assume Lemma 3 holds for the ith round where
i ≥ 0, we show that it also holds for the (i + 1)th round.

Obviously, the (i + 1)th round starts with fr(i)(
⋃

j≤i Cj ∪
M) = 1. In this round, we need to connect all
those r(i + 1)-hop connected components into a whole
r(i + 1)-hop connected component. It is clear that as long
as fr(i+1)(

⋃
j≤i+1 Cj ∪M) > 1, there must exist more than

one r(i + 1)-hop connected components. And these r(i + 1)-
hop connected components are r(i)-hop connected because
the set

⋃
j≤i Cj ∪M has the r(i)-hop connection property.

Thus, there must exist two r(i+1)-hop connected components
which are r(i)-hop connected, and a path of length at most
r(i) exists between them. The middle node in this path is at
most 	 r(i)+1

2
 = r(i + 1) away from these two components.
So it can connect these components into one.

Thus, at each iteration in the (i+1)th round, the algorithm
can always find a satiable node that can reduce the number of
r(i + 1)-hop connected components by at least 1. Therefore,
Alg. 2 will continually execute until the round reaches the final
state fr(i+1)(

⋃
j≤i+1 Cj ∪M) = 1. Then Lemma 3 holds. �

Theorem 1: Alg. 2 connects a d-MIS into a d-CDS.
Proof: According to Lemma 3, Alg. 2 ends up at

f1(
⋃

j Cj ∪M) = 1, which means the subgraph induced by⋃
j Cj ∪M is connected. On the other side, set M alone can

dominate V . Thus,
⋃

j Cj ∪M is a d-CDS. �

C. Remove Redundant Nodes

After the first two phases, we obtain a d-CDS and denote
it as C. And all nodes in C are either black or blue. It is
not difficult to find that there may exist numbers of redundant
nodes in C. That is to say, after removing those redundant
nodes, the remaining nodes can still form a d-CDS. In Fig.3,
it is easy to figure out that node 16 and node 17 are redundant.
In this section, we will discuss how to further reduce the size
of C by checking and removing the redundant nodes in C.

From the perspective of the d-MCDS problem, a node v in
d-CDS is redundant iff:

• Every node that v dominates must have at least one
alternative dominator.

• The subgraph induced by C − {v} is connected.

The first requirement is to guarantee the property of domina-
tion. That is to say, after we remove those redundant nodes, the
remaining nodes in C can still dominate the whole network
within d hops. In this requirement, the dominator refers to
black node or blue node.

The second requirement can be analyzed in details. For any
node v ∈ C, there are two situations to discuss. First, in the
subgraph G[C] induced by C, if v is a leaf node, namely v’s
degree in G[C] is one, then removing v has no effects on the
connectivity of the subgraph G[C−{v}] induced by C−{v}.
Secondly, if v is connected by more than one connectors,
namely v’s degree in G[C] is more than 1, then the subgraph
G[C − {v}] is connected only when these connectors are
connected. To check whether those connectors are connected,
it may involve the whole subgraph G[C −{v}]. For example,
if all nodes in C form a ring, v’s connectors can be connected
by all the other nodes in G[C − {v}]. In this sense, the time
complexity is huge.

Obviously, if we want to find all the redundant nodes
from C, it will cost a lot of time. Hence, we should make trade-
off between the time complexity and the final performance.
In this paper, we only consider the first situation above to
effectively control the time complexity of this phase. In this
situation, we only need to check the first requirement to decide
whether v is redundant.

Actually, the trade-off we made is reasonable. In the first
phase, we make the distance between adjacent independent
nodes as large as possible. Consequently, there are a lot of
independent nodes in C located on the boundary area of
the whole wireless network. On the other side, it is easy to
observe that when a dominator lies in the boundary area of
a homogenous wireless network, its coverage area includes
a large area that are outside the network. This is actually a
kind of waste. From this point, we can conclude that, if we
could move those boundary dominators towards the inner of
the network, we can make better use of those nodes. Besides,
there is also a bigger opportunity for these boundary dominator
to be a redundant node than inner nodes.

Based on the discission above, we can further reduce the
size of C by Alg. 3. In each iteration, we only consider black
nodes which are leaves in the subgraph of G[C]. For any
black leaf node in C, if all its dominatees have alternative
dominators, we remove it from C and update its color as grey.
Afterwards, if v’s direct connector is now also a leaf in C, we
change this connector’s color as black. Alg. 3 continues to
find such redundant black nodes until such nodes don’t exist.

Fig. 4 is an example to illustrate the performance of Alg. 3
after processing Alg. 1 and Alg. 2 for Fig. 1.

V. DISTRIBUTED CS-CLUSTER

In this section, we will introduce a distributed algorithm,
namely Distributed CS-Cluster, for the d-MCDS problem.

2228 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Algorithm 3 Removing Redundant Dominators

Input : G = (V, E) and a d-CDS C of G
Output: A smaller d-CDS of G

1 L← {v| v is a black leaf node in G[C]};
2 while there exists a redundant node v ∈ L do
3 color v grey, remove v from C;
4 if v’s direct connector u is a leaf in G[C] then
5 color u black, add u into L;

6 return C.

Fig. 4. The result after processing Alg. 3. At the beginning of Alg. 3, there are
three black nodes, nodes 4, 11, 16 and L = {4, 11, 16}. By checking, we find
every node (nodes 8, 17) dominated by node 16 has alternative dominators
(themselves). Thus, node 16 is redundant. Remove it from C and color it
grey. Moreover, the degree of node 17 in G[C] at this time is one. Thus,
color node 17 black and add it to L. In the second iteration, we have three
black nodes, nodes 4, 17, 11 and L = {4, 11, 17}. Similarly, we find that
node 17 is redundant and remove it. Since the blue neighbor of node 17
is node 8 and the degree of node 8 is not 1, we do not change the color of
node 8. Consequently, we have two black nodes, nodes 4, 11 and L = {4, 11}.
By checking, neither of them is redundant. Thus, Alg. 3 terminates.

Similarly with CS-Cluster, the Distributed CS-Cluster also
consists of three phases.

For each node u, the local variables it contains are listed as
follows.

• id(u): u’s unique identification.
• color(u): u’s color.
• degree(u): The number of u’s white neighbors within

d hops.
• neighbor_info(u): The information of nodes which are

at most d hops away from u.
• neighbor_2d_info(u): The information of nodes whose

hop distances to node u are from d to 2d.
• componentNum(u): The number of component u

belongs to. Initially, the value of componentNum(u) is
equal to id(u).

• connectorCost(u): A collection of costs of nodes which
can connect u with other components

For neighbor_info(u), each item in it is a collection,
whose structure is [id, color, degree, dis], and corresponds
with one of u’s neighbor within 2d hops. For item elem, which
corresponds to node v, elem.id, elem.color and elem.degree
refer to v’s id, v’s color, and v’s degree respectively. In addi-
tion, elem.dis means the the hop distance between v and u.
elem.degree. Besides, neighbor_2d_info(u) is analogous to
neighbor_info(u).

A. Construct d-MIS

Alg. 4 shows the construction of a d-MIS distributedly. The
main idea is similar with Alg. 1 and we can select a d-MIS
iteratively based on the degree of each white node.

Messages involved in this phase are listed as follows.

• HELLO: Each node send this message to tell its existence
to its neighbors.

• BLACK: Once a node is colored black, it send this
message to notice its neighbors.

• GREY: Once a node is colored grey, it send this message
to notice its neighbors.

Algorithm 4 Distibutedly Constructing d-MIS

1 Send HELLO messages to neighbors within 2d hops to
initialize the local variables;
In each round, for every white node v:

2 Compare the value of degree(v) with degree(u), where
u ∈ N2d(v). Use node id to break ties;

3 if degree(v) is the largest then
4 Color v black;
5 Send a BLACK message to each node in N2d(v);

For every node v, when receiving a
BLACK message from node u:

6 Update u’s color in neighbor_info(v) or
neighbor_2d_info(v);

7 if color(v) is white and the distance between u and v is
at most d hops then

8 Color it grey;
9 Send a GREY message to each node in N2d(v);

For every node v, when receiving GREY
message from node u:

10 Update u’s color in neighbor_info(v) or
neighbor_2d_info(v).

Before Alg. 4, each node is colored white with a unique id.
Initially, each node sends HELLO messages to its neighbors
within 2d hops, so that it can get the initial values of its local
variables. Afterwards, Alg. 4 is processed round by round.
In each round, for any white node u, if degree(u) is the
maximum compared with its competitors, u is chosen as a
dominator and colored black. Then, u’s white neighbors within
d hops are colored grey.

Since Alg. 4 is a distributed algorithm, there may be more
than one node to be selected in each round. Besides, if a white
node is selected and colored black, it will affect the states of
nodes within its d hops, including the values of degree(·).
Considering that, for any node u, we restrict that only one
white node in N2d(u) is selected as a dominator in one round.
In order to achieve that purpose, for each white node v, let its
competitors be all the white nodes in N2d(v).

Next, we use an example to illustrate Alg. 4. For the
2-hop MCDS problem in Fig. 1, the procedure of Alg. 4 is
as follows. Initially, degree(4) and degree(11) are the largest
respectively, compared with nodes which are at most 4 hops
away from them. Thus, we color node 4 and 11 black and all

GAO et al.: NOVEL APPROXIMATION FOR MULTI-HOP CONNECTED CLUSTERING PROBLEM IN WIRELESS NETWORKS 2229

their neighbors within 2 hops {1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13,
14, 15} grey. In the second round, both of two white nodes
(node 16 and node 17) have one white neighbor. We break tie
with smaller id, color node 16 black and color node 17 gray.
Since there are not more white nodes, Alg. 4 terminates.

B. Connect d-MIS
After Alg. 5, we have already selected a d-MIS. In this sub-

section, we introduce how to connect them with a distributed
algorithm. Similar with Alg. 2, we connect the d-MIS with
the method of divide and conquer. In each subprocedure, we
select connectors based on the cost function as mentioned in
Section IV-B.1. The details are shown in Alg. 5.

Messages involved in this phase are listed as follows.
1) COST_COMPUTE: Grey nodes use this kind of mes-

sage to compute the value of its cost.
2) COST_INFO: Once a node figures out the value of

its cost, it sends this kind of message to inform its
neighbors.

3) COST_COMPARE: Grey nodes use this kind of mes-
sage to compare its cost value with others.

4) BLUE: Once a node is colored blue, it sends this kind
of message to inform its neighbors.

5) UPDATE_COMPONENT: This kind of message is used
to update the value of componentNum.

6) COST_UPDATE: This kind of message is used to inform
grey nodes to recompute its cost.

Since our algorithm is distributed, each node run the
algorithm locally. As a consequence, in each iteration of some
round, more than one node can be selected. Besides, once
a node is selected, its state, such as its color, will changed.
Such changes will further affect states of its neighbors. Hence,
nodes selected in a same iteration may cause collisions. In
order to avoid that, let each node maintain a local variable
componentNum, which records the component number the
node belongs to. The component here is actually ri-hop
connected component. Initially, at the beginning of each round
in Alg. 5, for any node u, the value of componentNum(u)
equals to the id of node u. Then, each node informs its
value of componentNum(·) within ri hops. For any two
nodes u, v, which are within ri hops to each other, their
componentNum(·) are set to be the smaller id of them.

Before the first iteration of the ith round, for each grey
node v, to compute cost(v), node v sends messages to nodes
in N ri(v). Once a black or blue node receives such a message,
it replies that with its value of componentNum(·) and the
hop distance between itself and the sender of such message.
With these information, node v can figure out cost(v). After
v figures out cost(v), v broadcasts cost(v) to nodes in N ri(v).
All black and blue nodes in N ri(v) store cost(v) in their local
variables connector(·).

In each iteration of the ith round, each grey node v
compares cost(v) with elements in connector(w) where w
is a black or blue node and w ∈ N ri(v). If cost(v) is the
largest, it is selected as a connector and colored blue. Once
a node v is selected as a connector, all the black and blue
nodes in N ri(v) set their componentNum(·) to be the id of
node v. Of course, once a black or blue node u changes

Algorithm 5 Distributely Connecting d-MIS

1 r0 = 2d + 1;
In the ith round:

2 ri = 	 ri−1+1
2
;

3 Initialize componentNum.(v);

For every grey node v ∈ V :

4 Send COST_COMPUTE messages to nodes in N ri(v)
and compute cost(v) based on those replies;

5 After cost(v) is figured out, send COST_INFO messages
to nodes in N ri(v);
For each iteration in this round:

6 Send COST_COMPARE messages to nodes in N ri(v);
7 if All the replies are “YES” then
8 Color v blue;
9 Send BLUE messages to nodes in Nd(v);

When receiving a COST_UPDATE message:
10 Send COST_COMPUTE messages to nodes in N ri(v) to

compute cost(v);
11 After cost(v) is figured out, send CONT_INFO messages

to nodes in N ri(v);

For any black or blue node u ∈ V :

When receiving a COST_COMPUTE message
from node v:

12 Reply with componentNum(u) and the hop distance
between u and v;
When receiving a COST_INFO message from
node v:

13 Store cost(v) in connnector(u);
When receiving a COST_COMPARE message
from a grey node v with parameter
cost(v):

14 If cost(v) is the largest among all elements in
connector(u), reply with “YES”. Use node id to break
ties in the procedure of comparison. Otherwise, reply
with “NO”;
When receiving a BLUE message from node
v with parameter v(id):

15 Update v’s color in u’s local variables;
16 if the distance between v and u is at most ri then
17 Change componentNum(u) to v(id);
18 Send UPDATE_COMPONENT with parameter v(id)

to nodes in N ri(u), not including v, telling them to
change their compoonentNum;

19 Send COST_UPDATE to nodes in N ri(u), telling
them to recompute their cost;

When receiving a UPDATE_COMPONENT
message from node v with parameter num:

20 Change componentNum(u) to num;
21 Send UPDATE_COMPONENT with parameter num to

nodes in N ri(u), not including v.

the value of componentNum(u), it informs all those nodes,
which are located in the same component with node u, to set

2230 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

their componentNum(·) as the current componentNum(u).
Besides, the new component informs its all grey neighbors
within ri hops to update their cost(·) and further update some
values of connector(·).

The pseudo-codes of this procedure are presented in Alg. 5.
For the 2-hop MCDS problem in Fig. 1, the procedure of
Alg. 5 is as follows. At the beginning of the first round,
there are three 3-hop connected components ({4}, {11}, {16}).
We should 3-hop connect these three components into one.
At this time, the values of nodes 7, 8, 9, 17 are 1/3, 2/5,
2/5, 1/3 respectively, while all other grey nodes have value
0. Since node 8 has smaller id than node 9, we color node
8 blue. Now the 3-hop connected component is only {4, 8,
11, 16}, and thus the first round terminates. Next, in the
second round there are two 2-hop connected components ({4,
8, 16}, {11}). At this time nodes 9, 10 have the same value of
1/2 while other grey nodes have value 0. Similarly we color
node 9 blue and terminate the second round. When the third
round starts, there are four 1-hop connected components ({4},
{8, 9}, {11}, {16}), while nodes 7, 17, 10 have the same
value of 1 and other grey nodes have value 0. Thus, we select
node 7 in the first iteration of this round. Then, select 10 in
the second iteration, and 17 in the third iteration. After that,
Round 3 terminates. At this time r = 1. Consequently, Alg. 5
completes its task.

C. Remove Redundant Nodes
As we discussed in Section IV-C, there may exist a lot of

redundant nodes after Alg. 4 and Alg. 5. In this section, we
discuss how to remove those redundant nodes to further reduce
the size of d-CDS. Similar with Section IV-C, we still only
consider black leaf nodes in G[C], where C is the d-CDS
obtained from phase 1 and phase 2.

Messages involved in this phase are listed as follows.
1) ALTER_DOMINATOR: This kind of message is used

to request whether their dominatees have alternative
dominators.

2) GREY2: Once a dominator is removed and colored grey,
it sends this message with its id to notice its neighbors.

3) CANDIDATE: Once a node is checked to be redundant,
it sends this message with its id to notice its competitors
within 2d hops.

Obviously, in this phase, the most important work is to
decide whether a black node in C is redundant. According
to the analysis Section IV-C, we just need to check the
first requirement. As Alg. 6 shows, to check that, for any
black node v which connects to only one blue node, v sends
ALTER_DOMINATOR messages to its grey neighbors within
d hops and asks whether they have alternative dominators.
Once a grey node u receives such a message, it will check
its local variable neighbor_info which includes all the nodes
which can dominate u within d hops. If neighbor_info con-
tains multiple dominators, u sends a positive reply. Otherwise,
u sends a negative reply. Eventually, if v does not receive any
negative message, it means v is a redundant node.

Since our algorithm is distributed, more than one node can
be removed in each round. If a dominator is removed, it will
affect the states of its d-hop neighbors. Considering that, there

Algorithm 6 Removing Redundant Dominators

In each round, for every black node v
which connects to only one blue node:

1 v sends ALTER_DOMINATOR messages to grey nodes
in Nd(v);

2 if v does not receive any negative reply then
3 Send CANDIDATE with v’s id to nodes in N2d(v);

4 if v does not receive any CANDIDATE message those id
is larger than id(v) then

5 Color v as grey;
6 Send GREY2 messages with v’s id to nodes in Nd(v);

In each round, for every grey node u:
When receiving ALTER_DOMINATOR message:

7 Check neighbor_info(u). If there are multiple
dominators, reply with “YES”. Otherwise, reply with
“NO”;
When receiving GREY2 message with id:

8 Update u’s local variables;
In each round, for every blue node u:
When receiving GREY2 message with id:

9 if the distance between u and the node corresponding
with id is one hop then

10 if u connects to only one blue node then
11 color v as black;

may exist some conflicts. For example, at the beginning of
some round, assume that node t is dominated by node v
and node u. And both node u and node v have only one
dominatee, namely node t. Hence, in this round, both u and
v are redundant. However, if we remove both of them, node
t will have no dominator. To avoid such conflicts, for any
node u, we restrict that only one dominator in N2d(u) can be
removed in a round as Alg. 6 shows.

For the 2-hop MCDS problem in Fig. 1, the pro-
cedure of Alg. 6 is as follows. In the first iteration,
there are three black nodes, nodes 4, 11, 16. By sending
ALTER_DOMINATOR messages, only node 16 figures out
that itself is redundant and send CANDIDATE messages.
Since node 4 and node 11 are not redundant, they will not
send CANDIDATE messages, thus node 16 does not receive
any CANDIDATE messages. Hence, node 16 is colored grey
and send GREY2 messages. Afterwards, blue node 17 receives
such GREY2 message and the distance between itself with
node 16 is one hop. Thus, node 16 is colored black. Similarly,
in the second iteration, there are three black nodes, nodes 4,
17, 11. Node 17 is redundant and remove it. Since the blue
neighbor of node 17 (node 8) connects to two blue nodes,
it does nothing. Consequently, there are two black nodes,
nodes 4, 11. By checking, neither of them is redundant. Thus,
Alg. 6 terminates.

VI. PERFORMANCE ANALYSIS

A. An Upper Bound of d-MIS Size for a UDG G

To analyze the performance of CS-Cluster, we need to firstly
discuss the upper bound of d-MIS size for a given graph. Given

GAO et al.: NOVEL APPROXIMATION FOR MULTI-HOP CONNECTED CLUSTERING PROBLEM IN WIRELESS NETWORKS 2231

Fig. 5. The relation between λ and d. (a) The value of d is from 1 to 15.
(b) The value of d is from 1 to 250.

a UDG G = (V, E), let α(G) denote the size of d-MIS in G
and γ(G) the size of d-MCDS in G, and let λ be the ratio of
α(G) and γ(G). λ is computed as follows.

λ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ΔS√
3/2

, if d ≤ 2,

ΔS√
3

2
�1
2
	d− 1

2

�

+ 3.399, if d ≥ 3.
(2)

You can find the proof of λ in the Appendices A and B.1

Fig. 5 depicts the relation between λ and d. From these
figures, we can conclude that the value of λ is maximum when
d = 6 and is equal to 18.4. Moreover, we also find when
d → ∞, λ → 12.6366. Therefore, for arbitrary value of d,
the value of λ is no more than 18.4. In this sense, λ has little
relation to d. Thus, our analysis improve the previous O(d)
into O(1). This is a huge improvement.

B. The Approximation Ratio of CS-Cluster

Assume the size of an optimal d-MCDS is opt. Through
Alg. 4, we get a d-MIS, namely the set M . According to the
analysis in Appendix B, we have |M | ≤ λopt. As for Alg. 5,
we have Lemma 4 below.

Lemma 4: The total number of connectors selected in
Alg. 5, namely C\M , is at most 2dλopt.

Proof: In the first round, as we described above, Alg. 5
is to connect all r(1)-hop connected components into one
r(1)-hop connected component. Moreover, before the end
of the current round, there always exists one node that can
r(1)-hop connect two r(1)-hop connected components. Let

1Appendices are shown online as the supplemental materials, available on
IEEE Xplore.

Fig. 6. Number of connectors with different connecting ways. (a) d=3.
(b) d=5.

v be that node. Then we have

cost(v) ≥ 1
r(0)− 1

=
1
2d

.

Since Alg. 5 always selects the node with largest value in each
iteration, the node that is chosen in this iteration has the value
of at least cost(v). Consequently, for each node in C1, the
value is at least 1

2d when it is chosen.
There exists an alternative algorithm to connect M . For

each node v ∈ C1, when it is chosen, assume the number
of r(1)-hop connected components it can r(1)-hop connect is
comp(v). We select all the nodes in the shortest paths from v
to the comp(v) r(1)-hop connected components. Obviously,
all those chosen nodes can connect M into a d-CDS. Besides,
the size of Ci is at most |M | − 1 because each node in Ci

can reduce at least one r(1)-hop component and the number
of the original r(1)-hop connected components is at most |M |
when Alg. 5 begins. Thus, the size of these connectors is

∑

v∈C1

no.(v) ≤
∑

v∈C1

comp(v)
cost(v)

≤ 2d|M |.

Similarly, in the ith round, for each node in Ci, the value
when it is chosen is at least 1

r(i−1)−1 . The initial number of
r(i)-hop connected components is no more than

|M |+
i−1∑

j=1

|Cj | ≤ 2i−1|M |.

2232 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Fig. 7. Comparison among CS-Cluster, Gao’s algorithm in [29] and Generalized d-CDS in [27] in different cases where d = 2, 3, 4 respectively. (a) Comparison
when d = 2. (b) Comparison when d = 3. (c) Comparison when d = 4.

There also exists an alternative algorithm to connect M∪j<iCi

into a d-CDS, and the size of the connectors is
∑

v∈Ci

no.(v) ≤
∑

v∈Ci

comp(v)
cost(v)

≤ (r(i− 1)− 1)2i−1|M |.

Since

(r(i− 1)− 1)2i−1 = (r(i− 2) + 1
2

 − 1) · 2 · 2i−2

≤ (r(i− 2)− 1)2i−2

. . .

≤ r(0)− 1 = 2d,

we have
∑

v∈Ci

no.(v) ≤ 2d|M |.
Finally, in the tth round where r(t) = 1, Alg. 5 does the

same with its corresponding algorithm. Therefore, |C\M | =∑

v∈Ct

no.(v) ≤ 2d|M |, and Lemma 4 follows. �
From the procedure of proof above, it not difficult to

conclude the following corollary.
Corollary 1: After the ith round, Alg. 5 will indicate a

feasible solution Fi with size
∑

v∈Ci
no.(v) which alone can

connect M into d-CDS. Moreover, the size of Fi is no more
than Fi−1.

With Lemma 4, we can finally get the following theorem.
Theorem 2: Our three-phase algorithm CS-Cluster has an

approximation ratio of (2d + 1)λ.

C. Further Discussion

In this subsection, we will discuss some extra advantages
of CS-Cluster as follows.

Firstly, although what we discussed above is under UDG
model, it is not difficult to see that CS-Cluster actually fits for
general graph model and even for heterogeneous networks.

Secondly, it is not difficult to find that the second phase
of CS-Cluster is also a Steiner algorithm. Although Alg. 2 is
only fit for connecting d-MIS, it can also be applied to genal
Steiner problem with slightly modification.

Besides, as we can see, the definition of r(i) in Alg. 5 can
greatly affect the performance of CS-Cluster. In the current
Alg. 5, we connect those d-MIS nodes in a logarithmic way.
This can of course increase the speed of Alg. 5. Then, an intu-
itive idea to improve the performance of CS-Cluster is to use

Fig. 8. A sample of UDG which contains 100 nodes. (a) 2-CDS by Gao’s
algorithm. (b) 2-CDS by CS-Cluster

a linear way to connect those d-MIS nodes. Correspondingly,
the definition of r(i) is as follows:

{
r(0) = 2d + 1,

r(i) = r(i − 1)− 1.
(3)

In this new way, the performance of our algorithm may be
increased at the cost of time complexity. However, what we
expect is not right. Applying Eqn. (3) to Alg. 2, we get the
results as Fig. 6 shows.

From Fig. 6, we can see that CS-Cluster uses more connec-
tors to connect d-MIS in the linear connection way than the
original logarithmic connection way.

VII. SIMULATION

In this section, we compare CS-Cluster with previous lit-
erature [27], [29] (refer as Gao’s algorithm and Generalized
d-CDS). In our simulations, we randomly deploy sensor nodes
in a 2D virtual space. The number of nodes varies from 50 to
1000 at intervals of 50. Each two nodes can connect to each
other when the distance between them is at most 1. Moreover,
we also ensure that the generated graph is connected. In
fact, Generalized d-CDS generates d-connected set instead of
connected set (two vertices are d-connected if there is a path
of length smaller than d between them), therefore we modified
Generalized d-CDS (connecting separate vertices via shortest
path) to generate a connected set.

Fig. 7(a)-(c) exhibit the performance comparisons between
these algorithms with different d. From the figure, we can

GAO et al.: NOVEL APPROXIMATION FOR MULTI-HOP CONNECTED CLUSTERING PROBLEM IN WIRELESS NETWORKS 2233

conclude that CS-Cluster always outperforms the others under
different settings.

Fig. 8 shows a comparison between CS-Cluster and Gao’s
algorithm with 100 nodes where d = 2. We can see
the superiority of CS-Cluster since Gao’s algorithm con-
structs a 2-CDS with 28 nodes while CS-Cluster only uses
15 nodes.

VIII. CONCLUSION

In this paper, we studied the multi-hop connected clustering
problem for a given homogenous wireless network, which can
be formed as finding a minimum d-hop connected dominating
set problem (d-MCDS) for a given graph. We then pro-
posed a distributed approximation algorithm named Connected
Sparse Clustering Scheme (CS-Cluster) to solve the problem.
CS-Cluster consists of three phases: dominator selection, con-
nector insertion, and redundancy elimination. To evaluate the
performance of CS-Cluster, we estimated the upper bound λ
for the dominator size in a unit disk graph, and proved that
λ is no more than 18.4. As a result, we reduce the bound of
O(d) from previous literature [30] to O(1), and achieved an
approximation ratio of (2d + 1)λ for CS-Cluster, which is the
best constant-factor approximation up to now. Our simulation
results also exhibited the outstanding performance of CS-
Cluster.

REFERENCES

[1] J. Wang, Z. Cao, X. Mao, and Y. Liu, “Sleep in the dins: Insomnia
therapy for duty-cycled sensor networks,” in Proc. IEEE INFOCOM,
Apr./May 2014, pp. 1186–1194.

[2] S. Guo, C. Wang, and Y. Yang, “Mobile data gathering with Wireless
Energy Replenishment in rechargeable sensor networks,” in Proc. IEEE
INFOCOM, Apr. 2013, pp. 1932–1940.

[3] Q. Liao et al., “Visualizing anomalies in sensor networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 460–461, 2011.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[5] X. Fang, H. Gao, J. Li, and Y. Li, “Approximate multiple count in
wireless sensor networks,” in Proc. IEEE INFOCOM, Apr./May 2014,
pp. 1474–1482.

[6] C. Schurgers and M. B. Srivastava, “Energy efficient routing in wire-
less sensor networks,” in Proc. IEEE MILCOM, vol. 1. Oct. 2001,
pp. 357–361.

[7] C. R. Dow, P. J. Lin, S. C. Chen, J. H. Lin, and S. F. Hwang, “A study
of recent research trends and experimental guidelines in mobile ad-hoc
network,” in Proc. IEEE AINA, vol. 1. Mar. 2005, pp. 72–77.

[8] S. Bandyopadhyay and E. J. Coyle, “An energy efficient hierarchical
clustering algorithm for wireless sensor networks,” in Proc. IEEE
INFOCOM, vol. 3. Mar./Apr. 2003, pp. 1713–1723.

[9] O. Younis and S. Fahmy, “Distributed clustering in ad-hoc sensor net-
works: A hybrid, energy-efficient approach,” in Proc. IEEE INFOCOM,
Mar. 2004, p. 640.

[10] J. Ma, W. Lou, Y. Wu, M. Li, and G. Chen, “Energy efficient
TDMA sleep scheduling in wireless sensor networks,” in Proc. IEEE
INFOCOM, Apr. 2009, pp. 630–638.

[11] Y. Zhuang, J. Pan, and L. Cai, “Minimizing energy consumption with
probabilistic distance models in wireless sensor networks,” in Proc.
IEEE INFOCOM, Mar. 2010, pp. 1–9.

[12] M. Alaei and J. M. Barcelo-Ordinas, “Node clustering based on over-
lapping FoVs for wireless multimedia sensor networks,” in Proc. IEEE
WCNC, 2010, pp. 1–6.

[13] O. Younis and S. Fahmy, “HEED: A hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks,” IEEE Trans. Mobile
Comput., vol. 3, no. 4, pp. 366–379, Oct./Dec. 2004.

[14] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh, “Max-
min d-cluster formation in wireless ad hoc networks,” in Proc. IEEE
INFOCOM, Mar. 2000, pp. 32–41.

[15] Y. Fernandess and D. Malkhi, “k-clustering in wireless ad hoc net-
works,” in Proc. ACM POMC, 2002, pp. 1–7.

[16] F. G. Nocetti, J. S. Gonzalez, and I. Stojmenovic, “Connectivity based
k-hop clustering in wireless networks,” Telecommun. Syst., vol. 22, no. 1,
pp. 205–220, Jan. 2003.

[17] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,”
Ann. Discrete Math., vol. 48, pp. 165–177, Jan. 1991.

[18] P.-J. Wan, K. M. Alzoubi, and O. Frieder, “Distributed construction of
connected dominating set in wireless ad hoc networks,” in Proc. IEEE
INFOCOM, Jun. 2002, pp. 1597–1604.

[19] W. Wu, H. Du, X. Jia, Y. Li, and S. C.-H. Huang, “Minimum connected
dominating sets and maximal independent sets in unit disk graphs,”
Theor. Comput. Sci., vol. 352, nos. 1–3, pp. 1–7, Mar. 2006.

[20] X. Gao, Y. Wang, X. Li, and W. Wu, “Analysis on theoretical bounds
for approximating dominating set problems,” Discrete Math., Algorithms
Appl., vol. 1, no. 1, pp. 71–84, 2009.

[21] M. Li, P.-J. Wan, and F. Yao, “Tighter approximation bounds for
minimum CDS in unit disk graphs,” Algorithmica, vol. 61, no. 4,
pp. 1000–1021, Dec. 2011.

[22] Y. L. Du and H. W. Du, “A new bound on maximum independent set and
minimum connected dominating set in unit disk graphs,” J. Combinat.
Optim., vol. 30, no. 4, pp. 1173–1179, Nov. 2015.

[23] D. Kim et al., “A better approximation algorithm for computing
connected dominating sets in unit ball graphs,” IEEE Trans. Mobile
Comput., vol. 9, no. 8, pp. 1108–1118, Aug. 2010.

[24] T. H. P. Vuong and D. T. Huynh, “Adapting d-hop dominating sets to
topology changes in ad hoc networks,” in Proc. IEEE ICCCN, Oct. 2000,
pp. 348–353.

[25] T. N. Nguyen and D. T. Huynh, “Connected D-hop dominating sets in
mobile ad hoc networks,” in Proc. IEEE WiOpt, Feb./Mar. 2006, pp. 1–8.

[26] D. Cokuslu and K. Erciyes, “A hierarchical connected dominating set
based clustering algorithm for mobile ad hoc networks,” in Proc. IEEE
MASCOTS, Oct. 2007, pp. 60–66.

[27] M. Q. Rieck, S. Pai, and S. Dhar, “Distributed routing algorithms for
multi-hop ad hoc networks using d-hop connected d-dominating sets,”
Comput. Netw., vol. 47, no. 6, pp. 785–799, Apr. 2005.

[28] X. Li and Z. Zhang, “Two algorithms for minimum 2-connected
r-hop dominating set,” Inf. Process. Lett., vol. 110, no. 22,
pp. 986–991, Oct. 2010.

[29] X. Gao, W. Wu, X. Zhang, and X. Li, “A constant–factor approximation
for d–hop connected dominating sets in unit disk graph,” Int. J. Sensor
Netw., vol. 12, no. 3, pp. 125–136, 2012.

[30] Z. Zhang, Q. Liu, and D. Li, “Two algorithms for connected r-hop
k-dominating set,” Discrete Math., Algorithms Appl., vol. 1, no. 4,
pp. 485–498, 2009.

[31] X. Zhu, J. Li, Y. Xia, X. Gao, and G. Chen, “An efficient distributed
node clustering protocol for high dimensional large-scale wireless sensor
networks,” in Proc. ACM ICUIMC, vol. 4. 2014, pp. 1–8.

[32] W. Wang, D. Kim, N. Sohaee, C. Ma, and W. Wu, “A PTAS for
minimum d-hop underwater sink placement problem in 2-D underwater
sensor networks,” Discrete Math., Algorithms Appl., vol. 1, no. 2,
pp. 283–289, 2009.

[33] D. Kim et al., “Minimum data-latency-bound k-sink placement problem
in wireless sensor networks,” IEEE/ACM Trans. Netw., vol. 19, no. 5,
pp. 1344–1353, Oct. 2011.

[34] W. Wang et al., “A new constant factor approximation to construct highly
fault-tolerant connected dominating set in unit disk graph,” IEEE/ACM
Trans. Netw., vol. 25, no. 1, pp. 18–28, Feb. 2017.

[35] B. Liu et al., “On approximating minimum 3-connected m-dominating
set problem in unit disk graph,” IEEE/ACM Trans. Netw., vol. 24, no. 5,
pp. 2690–2701, Oct. 2016.

[36] W. Wang et al., “On construction of quality fault-tolerant virtual
backbone in wireless networks,” IEEE/ACM Trans. Netw., vol. 21, no. 5,
pp. 1499–1510, Oct. 2013.

[37] Y. Hong et al., “Construction of higher spectral efficiency virtual
backbone in wireless networks,” Ad Hoc Netw., vol. 25, pp. 228–236,
Feb. 2015.

[38] D. Kim, Y. Wu, Y. Li, F. Zou, and D. Z. Du, “Constructing min-
imum connected dominating sets with bounded diameters in wire-
less networks,” IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 2,
pp. 147–157, Feb. 2009.

2234 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Xiaofeng Gao received the B.S. degree in infor-
mation and computational science from Nankai
University, China, in 2004, the M.S. degree in oper-
ations research and control theory from Tsinghua
University, China, in 2006, and the Ph.D. degree in
computer science from The University of Texas at
Dallas, USA, in 2010. She is currently an Associate
Professor with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University,
China. She has authored over 100 peer-reviewed
papers in the related area, including well-archived

international journals, such as the IEEE TRANSATIONS ON COMPUTERS,
the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,
the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,
IEEE TRANSACTIONS ON MOBILE COMPUTING, and also in well-known
conference proceedings, such as INFOCOM, SIGKDD, and ICDCS. Her
research interests include wireless communications, data engineering, and
combinatorial optimizations. She has served on the Editorial Board of Discrete
Mathematics and Algorithms and Applications.

Xudong Zhu received the B.S. degree in com-
puter science from Shanghai Jiao Tong University
in 2014. He is currently a Graduate Student with
the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University, China. His
research interests include combinatorial optimization
and approximation algorithm.

Jun Li received the B.S. degree in optical infor-
mation science and technology from Shanghai
Jiao Tong University in 2013. He is currently a Grad-
uate Student with the Department of Computer Sci-
ence and Engineering, Shanghai Jiao Tong Univer-
sity, China. His research interests include connected
dominating set in wireless sensor works, coverage in
wireless sensor works, and approximation algorithm.

Fan Wu received the B.S. degree in computer
science from Nanjing University in 2004 and the
Ph.D. degree in computer science and engineering
from The State University of New York at Buffalo in
2009. He is currently an Associate Professor with the
Department of Computer Science and Engineering,
Shanghai Jiao Tong University. He has visited the
University of Illinois at Urbana–Champaign as a
Post-Doctoral Research Associate. He has authored
over 100 peer-reviewed papers in technical journals
and conference proceedings. His research interests

include wireless networking and mobile computing, algorithmic game theory
and its applications, and privacy preservation. He has served on the Editorial
Board of Computer Communications, and as a member of technical program
committees of more than 60 academic conferences.

Guihai Chen received the B.S. degree from Nanjing
University in 1984, the M.E. degree from Southeast
University in 1987, and the Ph.D. degree from The
University of Hong Kong in 1997. He had been
invited as a Visiting Professor by many universities,
including the Kyushu Institute of Technology, Japan,
in 1998, the University of Queensland, Australia,
in 2000, and Wayne State University, USA, from
2001 to 2003. He is currently a Distinguished Pro-
fessor with Shanghai Jiao Tong University, China.
He has authored over 400 peer-reviewed papers, and

over 200 of them are in well-archived international journals or conference
proceedings. He has a wide range of research interests including sensor
network, peer-to-peer computing, high-performance computer architecture,
and combinatorics.

Ding-Zhu Du received the M.S. degree from the
Chinese Academy of Sciences in 1982 and the
Ph.D. degree from the University of California at
Santa Barbara in 1985, under the supervision of
Prof. Ronald V. Book. He is a Professor with
the Department of Computer Science, University
of Texas at Dallas. He was with the Mathematical
Sciences Research Institute, Berkeley, USA, from
1985 to 1986, the Department of Mathematics,
Massachusetts Institute of Technology, USA, from
1986 to 1987, the Department of Computer Science,

Princeton University, USA, from 1990 to 1991, and the Department of
Computer Science and Engineering, University of Minnesota from 1992 to
2005. He is the Editor-In-Chief of the Journal of Combinatorial Optimization.
He is on the editorial boards for several other journals.

Shaojie Tang received the Ph.D. degree in computer
science from the Illinois Institute of Technology
in 2012. He is currently an Assistant Professor
with the Naveen Jindal School of Management, The
University of Texas at Dallas. His research interest
includes social networks, mobile commerce, game
theory, e-business, and optimization. He received
the Best Paper Awards in the ACM MobiHoc 2014
and the IEEE MASS 2013. He also received the
ACM SIGMobile Service Award in 2014. He served
in various positions, such as as chairs and TPC

members, at numerous conferences, including the ACM MobiHoc and the
IEEE ICNP. He is an Editor of Information Processing in the Agriculture and
the International Journal of Distributed Sensor Networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

